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Abstract: Mesenchymal stem cells (MSCs) are multipotent adult stem cells present in virtually all
tissues; they have a potent self-renewal capacity and can differentiate into multiple cell types. They
also affect the ambient tissue by the paracrine secretion of numerous factors in vivo, including the
induction of other stem cells’ differentiation. In vitro, the culture media supernatant is named secre-
tome and contains soluble molecules and extracellular vesicles that retain potent biological function
in tissue regeneration. MSCs are considered safe for human treatment; their use does not involve
ethical issues, as embryonic stem cells do not require genetic manipulation as induced pluripotent
stem cells, and after intravenous injection, they are mainly found in the lugs. Therefore, these cells
are currently being tested in various preclinical and clinical trials for several diseases, including
COVID-19. Several affected COVID-19 patients develop induced acute respiratory distress syndrome
(ARDS) associated with an uncontrolled inflammatory response. This condition causes extensive
damage to the lungs and may leave serious post-COVID-19 sequelae. As the disease may cause
systemic alterations, such as thromboembolism and compromised renal and cardiac function, the
intravenous injection of MSCs may be a therapeutic alternative against multiple pathological mani-
festations. In this work, we reviewed the literature about MSCs biology, focusing on their function in
pulmonary regeneration and their use in COVID-19 treatment.
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1. Mesenchymal Stem Cells Can Be Isolated from Different Adult Tissues

Mesenchymal stem cells (MSCs) were described by Friedenstein in 1970 [1] and were
first isolated from the bone marrow as non-hematopoietic stem cells. In 1991, Caplan
introduced the term “mesenchymal stem cells” because it was believed that these cells
would differentiate into mesodermal (middle germ layer) cells, such as bone, cartilage,
tendon, fat, skin, muscle, and marrow stromal cells [2–4]. However, today we know that
MSCs can also differentiate into ectodermal [5] and endodermal [6] cell lines, characterizing
them as pluripotent stem cells [7,8]. They are adherent spindle-shaped cells found in
virtually all adult tissues as a population of undifferentiated tissue-resident cells that
facilitate tissue remodeling and repair during life [9]. MSCs generate progeny by self-
renewal and can differentiate into various cell types depending on the particular tissue.
However, in many organs, their pluripotency decreases with age, leading to reduced
regenerative potential.

Although several trials are being conducted using MSCs to regenerate multiple tis-
sues and organs, much remains to be elucidated about their biology and regenerative
capacity. In general, MSCs are perivascular cells [10,11] that can be expanded for long
periods in culture and, as observed in vivo, extended maintenance in vitro may reduce
their pluripotency, limiting their applicability. Moreover, empirical evidence demonstrating
that MSCs have the capacity for asymmetric cell division is still lacking [12], a characteristic
of conventional stem cells [13]. Additionally, by definition, stem cells are rare cell popula-
tions that undergo self-renewal and yield progenitors to differentiate hierarchically into

Cells 2021, 10, 2588. https://doi.org/10.3390/cells10102588 https://www.mdpi.com/journal/cells

https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0001-9136-240X
https://doi.org/10.3390/cells10102588
https://doi.org/10.3390/cells10102588
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cells10102588
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells10102588?type=check_update&version=1


Cells 2021, 10, 2588 2 of 18

other cell types. However, MSCs appear to affect different cell types and alter the tissue
microenvironment via paracrine signaling, inducing differentiation of other resident stem
cells (cooperative activity), angiogenesis, chemotaxis, alteration of the local inflammatory
response against pathogens and damage [14], tissue repair, proliferation, apoptosis control,
and others [15,16].

Finally, MSCs seem to be a much more heterogeneous population than initially
envisioned. It is unclear, for example, whether these cells regenerate only in the tissues
from which they originate, or if their heterogeneity allows the differentiation into other
tissue parenchymal cell types in vivo [3,9]. Moreover, there are no ethical issues involved,
in contrast to the use of embryonic stem cells in regenerative medicine, and they can be
harvested in relatively large numbers, mainly from bone marrow and adipose tissue [17].
All these characteristics contribute significantly to the therapeutic use of MSCs [14].

Due to the lack of definitive and consensual markers, human MSCs have been mini-
mally identified using their capacity to adhere to plastic culture surfaces, and their canonical
phenotype is based on expressed markers after in vitro expansion [18]. The identification of
MSCs is usually based on the combined expression of CD73, CD90, and CD105, with no expres-
sion of CD34, CD45, CD14, and HLA-DR (Figure 1A). Moreover, it is also necessary that they
differentiate into three lineage cells: adipocytes, chondrocytes, and osteocytes, under inductive
culture conditions [18]. So far, bone marrow-derived MSCs are the best-characterized cells with
multipotent differentiation capacity. These cells have fibroblast-like morphology, adhere to plas-
tic, and undergo extensive proliferation and clonal expansion confirmed by colony-forming unit
fibroblast assay (CFU-F). MSCs can also express various additional surface markers, including
CD10, CD73, CD140b, CD146, the disialoganglioside GD2, and CD271. Moreover, they may
express pluripotency markers such as Oct4, Nanog, and stage-specific embryonic antigen-4
(SSEA-4) that identify different cell populations in the bone marrow [19].
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Figure 1. Mesenchymal stem cells (MSCs), general characteristics and function. (A) The conventional phenotype for
MSCs identification includes CD73, CD90, and CD105 with no CD34, CD45, CD14, and HLA-DR expression. Once
isolated, MSCs differentiate into chondrocytes, adipocytes, and osteoblasts in vitro. (B) MSCs’ biological functions in
treating COVID-19 pneumonia (and systemic disease) include immunomodulatory and antiviral activity, angiogenesis, cell
differentiation, mesenchymal–epithelial transition (MET), environment modulation due to the paracrine secretion of soluble
factors (secretome), and tissue repair.
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The nomenclature “MSC” causes great confusion in the scientific literature and can
also mean “mesenchymal stromal cells”. Thus, the International Society for Cellular
Therapy (ISCT) suggests that the fibroblast-like plastic-adherent cells, regardless of the
tissue from which they were isolated, be termed “multipotent mesenchymal stromal cells”.
Then, the term mesenchymal stem cells should beused only for cells that meet specific stem
cell criteria. The widely recognized acronym, MSC, may be used for both cell populations
since researchers define the correct designation in their research [20]. In fact, mesenchymal
stromal cells are present in the stroma of several organs and tissue and are a heterogeneous
population comprising several cell types such as stem cells, progenitor cells, fibroblasts,
and many others [21,22]. Thus, it is the stem cells present in this population that can
differentiate into cells of the mesodermal, ectodermal, and endodermal lineage, at least
in vitro [23]. Therefore, the acronym MSC refers more appropriately to the stem cells
defined by the term multipotent mesenchymal stromal cells.

MSCs isolated from different adult tissues are highly heterogeneous. In fact, a compar-
ison of MSCs isolated from bone marrow, umbilical cord blood, or adipose tissue showed
diverse characteristics in cell differentiation [24]. With the large number of clinical trials
involving MSCs, the scientific community gathered to standardize the studies. This group
aimed to prevent the propagation of questionable stem cell-based results and avoid the
misuse and commercialization of uncertain stem cell-based treatments. Thus, a consensus
was reached with the content of a tool named “DOSES” which is based on the reporting of
five core items: D—donor (i.e., autologous, allogeneic, xenogeneic); O—origin of tissue;
S—Separation from other cell types/preparation method; E—exhibited cell characteristics
associated with behavior; and S—site of delivery [25,26].

2. MSCs’ Regenerative Capacity in the Lungs

With the onset of the COVID-19 pandemic and the high mortality rate due to pneu-
monia and thromboembolic events in the lungs, several initiatives using MSCs started
being tested to treat the acute phase of symptomatic patients and pulmonary post-COVID
sequelae. The lung is conditionally renewed, and the renovation of epithelial cells in
the airways, for example, is less than 1% per day under normal healthy conditions [27].
The lung’s regenerative capacity contrasts with continuously renewed tissues, such as skin
and the bone marrow, which, considering proliferation, self-renewal, and differentiation
of hematopoietic stem cells (HSCs), generates approximately 1 × 109 hematopoietic cells
daily. Similarly to the kidneys and liver, the lungs undergo compensatory growth quickly
by increasing the cellular regeneration rate after injury [27].

Several preclinical and clinical trials indicate that MSC-based therapies are safe to
treat lung diseases [28]. In 2007, it was demonstrated that plastic-adherent cells could
be observed in bronchoalveolar lavage (BAL) fluid from patients that underwent a lung
transplant. In this case, clonal proliferation of fibroblast-like cells was observed, and
immunophenotypic analysis showed the expression of vimentin and prolyl-4-hydroxylase,
suggesting a mesenchymal phenotype. Multiparametric flow cytometry analysis further
revealed the expression of CD73, CD90, and CD105, and hematopoietic lineage markers
such as CD14, CD34, and CD45 were absent. In addition, they showed multipotency, with
the ability to differentiate into adipocytes, chondrocytes, and osteocytes in vitro [29].

MSCs can differentiate into epithelial cells [30], and a remarkable and reversible
phenomenon named mesenchymal–epithelial transition (EMT) and epithelial–mesenchymal
transition (MET) can occur in embryo development, tumor progression, wound healing,
and infections [31] (Figure 1B). In EMT, the natural polarity of epithelial cells is lost due
to a profound alteration in the cytoskeleton, associated with the loss of cell–cell adhesion
molecules. Moreover, these cells gain migratory and invasive properties and assume an
undifferentiated phenotype [32]. This process is triggered by receptors such as the trans-
forming growth factor-β (TGFbRs) and (neurogenic locus notch homolog) NOTCH, and
signaling pathways as wingless-related integration site (Wnt) and hypoxia response. Then,
transcription factors (TFs) such as ZEB1/2, Snail1/2, Twist, and LEF-1 [33] are activated.
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These TFs bind and inhibit the expression of genes encoding adherens, tight, GAP junction
molecules, desmosomes, E-cadherin, ZO-1, claudins, occludin, and others [34]. While
EMT is mainly associated with tumor progression and metastasis, MET leads mostly to
wound healing and cicatrization. MET is triggered by growth factor receptors, such as
fibroblast growth factor receptors (FGFRs), that bind to FGF10 and -7, for example. This
membrane interaction leads to the upregulation of the transcription repressors Sox2 and
Oct4 that suppress the EMT mediator Snail1 [35]. Moreover, c-Myc downregulates TGF-b1
and TGF-b receptor 2, and the TF Klf4 activates the epithelial program. These interactions
induce epithelial genes such as E-cadherin, EPCAM, MPZL2, STK17A, CLDN3 (claudin),
FAM3C, and many others.

Still regarding lung epithelial cells, studies in mice indicate that the lungs contain
multiple stem and progenitor cell populations residing in distinct regional niches, besides
MSCs [27]. Several types of endogenous airways and alveolar epithelial progenitor cells
are distributed in microenvironments throughout the pulmonary tract. Therefore, many
pulmonary progenitor cells may also be suitable for future studies and clinical trials, with
potential great clinical importance [36,37]. A study used the c-kit (CD117) marker to iden-
tify stem cells in the human lung and generated epithelial and mesodermal cell lineages
in culture [38]. In another study, human lung stem cells formed functional and struc-
turally integrated bronchioles, alveoli, and pulmonary vessels after injection into damaged
mouse lungs in vivo [38]. Another putative lung population of human stem cells with the
E-Cadherin+ Lgr6+ phenotype was isolated and expanded in vitro, showing the ability to
self-renew and differentiate in vitro into bronchioalveolar cells. In addition, when the cells
were injected into the kidney’s capsule, they produced fully differentiated bronchioalveolar
tissue [39]. Using sorted murine EpCAM+ epithelial stem/progenitor cells cocultured
with lung mesenchymal EpCAM− Sca-1+ cells, not MSCs, it was demonstrated that the
mesenchymal cells supported the proliferation and differentiation of lung epithelial cells.
The authors used a lung injury model and showed the importance of microenvironmental
factors, such as FGF10, in epithelial regeneration [40].

Several authors showed that human lung MSCs share common features with bone
marrow MSCs. For example, a murine CD45− cell subset also expressing Sca-1, CD73, and
CD105 generated a population of cells capable of adipogenic, osteogenic, and chondrogenic
differentiation in vitro [41]. Based on that phenotype, the cells were sorted and differed
from unsorted lung adherent cells, exhibiting a pattern of gene expression nearly identical
to bone marrow-derived MSCs. In BAL fluid, the same authors observed that MSCs from a
human asthmatic patient had identical cell surface markers and differentiation potential
compared with bone marrow-derived cells [41]. Besides the similarities in phenotype
and biological function between MSCs from both compartments, the authors concluded
that allergen sensitization and challenge increased the population of lung MSCs. Hoff-
man et al. also compared adult lung and bone marrow MSCs [42] and showed that MSCs
from both compartments are phenotypically and biologically similar in vitro and in vivo
after transplantation. However, lung MSCs showed greater survival rates, were more
resistant to anchorage-dependent short-term culture, and had enhanced lung retention
after the intravenous transplantation. The authors discussed that the increased retention
in the lungs was probably due to a higher expression of intercellular adhesion molecule-1
(ICAM-1), platelet-derived growth factor receptor alpha (PDGFRα), and integrin α2 [42].
Moreover, lung MSCs were more efficient in healing elastase-induced injury due to the
paracrine anti-inflammatory effect of these cells [42]. Finaly, some studies also showed that
MSCs can prevent cell death of alveolar macrophages in vitro by reducing the expression
of Bax, a pro-apoptotic protein, and increasing the anti-apoptotic protein Bcl-2 [43].
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MSCs also have antimicrobial activity (Figure 1B) and intra-pulmonary cell delivery
in a murine model of acute lung injury induced by LPS, improved survival, and miti-
gated inflammation [44]. MSCs alone have beneficial effects in sepsis induced by cecal
ligation and puncture, where they reduced systemic and pulmonary cytokine levels in
mice, preventing acute lung injury and organ dysfunction [45]. Using an in vivo mouse
model of E. coli-induced pneumonia, intratracheal administration of MSCs reduced bacte-
rial growth in lung homogenates and BAL fluid. The BAL itself from MSC-treated mice
had a more significant antimicrobial activity than the BAL from PBS-treated mice. This
antimicrobial activity was in part mediated by the secretion of the cathelicidin antimicrobial
peptide LL-37 [46].

For human treatment, MSCs are generally administered by the intravenous route.
Then, it is necessary to understand how these cells home to target tissues [47] since they
must interact with endothelial cells and transpose the endothelial barrier to reach damaged
or infected tissues. However, while transplanted MSCs flow throughout the recipient’s
body, it seems that many of these cells are physically trapped within low-caliber biforked
pulmonary vases [48,49]. This possibility may be a partial limitation for MSC-based
regimens to treat other damaged tissues; although local vasodilators could easily avoid it,
it is a positive characteristic to treat COVID-19 pulmonary impairment.

Regarding the repertoire of adhesion molecules required for cell tethering and adhe-
sion do endothelium, it was demonstrated that MSCs behave much like leukocytes [50].
Then, they require interaction with P-selectin expressed by endothelial cells and the en-
gagement of vascular cell adhesion molecule 1 (VCAM-1) with very late antigen 4 (VLA-4
or CD49d) [51]. The adhesion of circulating MSCs to the endothelium also depends on
shear stress due to the flow rate and previous activation of epithelial cells by TNF or IL-1β,
but not intercellular cell adhesion molecule (ICAM-1) expression [52]. Although a matter
of debate, endogenous MSCs also circulate in peripheral blood at very low frequencies,
and their number significantly increases after infection or injury [53]. Moreover, in blood,
MSCs may be bound and shielded by platelets and neutrophils, which may affect their
capacity to interact with activated endothelium for transmigration [54–56].

Understanding all characteristics involved in MSCs biology regarding homing, mi-
gration, differentiation capacity, paracrine function, and tissue regeneration will improve the
outcome of their clinical use and pave the way for future applications [57], including COVID-19.

3. MSCs Are Being Used in Several Treatments

Bone marrow-derived MSCs have been investigated in several in vivo models of lung
diseases and are more attractive than embryonic stem cells, as indicated in a previous
item [44,58–61]. They are also more suitable than induced pluripotent stem (iPS) cells, as
these cells must be genetically manipulated in a laboratory [62]. MSCs offer great promise
for treating several wasting and as yet incurable lung diseases, including emphysema,
idiopathic pulmonary fibrosis, pulmonary hypertension, and acute respiratory distress
syndrome [63]. One study showed that a population of bone marrow-derived stromal cells
transfected with hepatocyte growth factor (HGF) co-expressed MSCs-associated markers,
such as CD44, CD29, CD105, CD90, and CXCR4 in rats. To understand whether these cells
could have antifibrotic effects, bone marrow MSCs transfected with HGF were injected
into fibrotic areas in the lung of rats treated with bleomycin. In this condition, the authors
observed that the fibrosis was alleviated [64] (Table 1). The mechanism involved in this
beneficial effect has not yet been fully understood, but experimental evidence points to
a paracrine activity for repairing injured tissue cells. In a model of bronchopulmonary
dysplasia, the intratracheal delivery of bone marrow MSCs on post-natal day four improved
survival and exercise tolerance while attenuating alveolar and lung vascular injury and
pulmonary hypertension. However, the number of engrafted cells was disproportionately
low to solely account for the therapeutic benefit observed, suggesting a paracrine-mediated
mechanism [65]. Another study showed the effect of MSCs in a mouse model of ovalbumin
(OVA)-induced allergic inflammation and evaluated the effects of systemic administration
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of human MSCs over allergic inflammation. The authors observed pathology attenuation in
many areas, with mucus production and inflammatory cell infiltration inhibition, improved
lung function, reduced IgE serum levels, and increased Th2-driven cytokines [66] (Table 1).

Table 1. Different pulmonary diseases and the described effects of MSCs treatment.

Disease and Disease Model MSCs Origin Pathogeny Improvement References

Bleomycin-induced usual
interstitial pneumonia

Rat stromal
cells Reduced fibrosis [64]

Bronchopulmonary
dysplasia Rat Increased mice survival and

improved exercise tolerance [65]

OVA-induced allergy

Human MSCs
intravenously
injected into

mice

Reduce mucus, inflammation,
improved pulmonary function [66]

Bacteria-induced pneumonia Mouse Increased mice suvival and
bacterial clearance [67]

Incluenza infection Mouse Reduced lung injury [68–70]
Sulfur mustard-induced

lung injuty Mouse Improved pulmonary function,
Altered Th1/Th2 balance [71]

emphysema Rat Improved pulmonary function [72]
Acute respiratory distress

syndrome (ARDS) Human Reduced mortality [73]

In a murine model of Gram-negative-induced pneumonia, the treatment with MSCs
enhanced mouse survival and promoted bacterial clearance, which was at least partially
due to lipocalin 2 upregulation produced by the MSCs [67]. The application of MSCs was
also efficient in controlling influenza infection, leading to reduced lung injury. This effect
was attributed to attenuated pro-inflammatory cytokines secretion, reduced recruitment
of inflammatory cells, and increased alveolar macrophages [68–70] (Table 1). In sulfur
mustard-induced lung pathology, one of the most lethal chemicals that leads to major
pulmonary complications, the treatment with MSCs was very effective. After intraperi-
toneal administration of 2-chloroethyl ethyl sulfide (CEES), a sulfur mustard analog, the
progression of histopathological changes in the lungs reduced, and the Th1/Th2 balance
was restored [71] (Table 1).

Progressive pulmonary inflammation and emphysema have been implicated in chronic
obstructive pulmonary disease progression, and the effect of MSCs administration in the
pulmonary function was evaluated in rats. The animals were exposed to cigarette smoke
for eleven weeks, followed by the administration of MSCs into the lungs. This procedure
improved emphysema and destructive pulmonary function by suppressing the inflamma-
tory response, excessive protease expression and apoptosis, and by upregulating vascular
endothelial growth factor (VEGF) receptor 2 and TGF-β [72]. The transplant of MSCs into
patients with H7N9-induced acute respiratory distress syndrome (ARDS) has already been
conducted, and it significantly reduced the mortality of patients in the experimental group,
compared with the control group (17.6% against 54.5%) [73] (Table 1).

4. MSCs and Their Immunomodulatory Capacity

The primary mechanism of MSC-mediated immunosuppression may vary among
different species. For example, immunosuppression of human- or monkey-derived MSCs
is mediated by indoleamine 2,3-dioxygenase 1 (IDO1), whereas mouse MSCs utilize nitric
oxide (NO) under the same culture conditions [74]. The beneficial effect of MSC-based
therapies is multifaceted and may vary according to the target tissues/organs and the
nature of the damage. They seem to exert therapeutical activity by enabling the damaged
tissues to establish a balanced inflammatory response and regenerative microenvironment.
Therefore, MSCs have high plasticity, adopting immunosuppressive or pro-inflammatory
phenotypes according to the environment (Figure 1B). For example, it has been published
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that in the presence of high levels of pro-inflammatory cytokines or after engagement of
the Toll-like receptor (TLR)-3 [75], MSCs adopt an immunosuppressive phenotype and
reduce cell proliferation and function of multiple cells of the immune system. On the other
hand, in the early inflammation phase, with low inflammatory cytokines levels and after
TLR-4 engagement, MSCs adopt a pro-inflammatory phenotype and enhance the immune
response [75]. These responses are mediated by the release of growth factors, microvesicles,
chemokines, cytokines, complement components, immunosuppressive mediators, and
many others [76].

In most cases, however, MSCs are involved in downregulating the immune response
by silencing multiple effector T lymphocyte subpopulations and inducing Treg cells
(Figure 2A). In addition, they can directly or indirectly inhibit disease-associated Th1-,
Th2-, or Th17-mediated cell responses as well as cytotoxic T lymphocytes function, but
many central questions remain [77]. In diabetes, it was demonstrated that MSCs that
express IL-1Ra, a natural soluble inhibitor of the IL1 receptor, protected the tissue from
inflammation-induced injuries and controlled the disease onset [78]. It has also been pro-
posed that MSCs induce T-cell anergy as a potential mechanism of immune suppression,
as MSCs lack surface expression of costimulatory molecules, such as CD80 (B7-1), CD86
(B7-2), and others [79].
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Figure 2. Mesenchymal stem cells and their immunomodulatory capacity. (A) In most cases, MSCs are involved in the
downregulation of the immune response, silencing cells such as dendritic cells (DCs), T and B lymphocytes, NK cells, and
neutrophils. Moreover, they are involved in the induction of cells such as Treg and macrophages polarization towards M2
function. Several factors are also secreted from MSCs, such as prostaglandin E2 (PGE2), TGF-β, hepatocyte growth factor
(HGF), vascular endothelial growth factor (VEGF), IDO, and others that can inhibit the inflammatory response. (B) The
MSCs are dichotomic and can be immunosuppressive when in a pro-inflammatory environment (upper drawing); when in
the presence of acute infections or exposed to low levels of pro-inflammatory cytokines, they may potentiate the immune
response (lower drawing).

Through the secretion of multiple inflammatory inhibitors such as prostaglandin
E2 (PGE2), membrane molecules such as HLA-G, and cytoplasmic mediators such as
IDO1, MSCs inhibit neutrophils, B and T lymphocytes, NK cells, and others (Figure 2A),
also attenuate the production of IL-2 [80]. Moreover, MSCs secrete or express IL-10 on
the cell membrane [81], produce leukemia inhibitory factor (LIF) [82], galectin-1 and
semaphorin 3A [83], and galectin 3 [84], all of which are critical immunosuppressive
molecules. Interestingly, interferon-gamma (IFN-γ) and tumor necrosis factor (TNF) are
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known to enhance the immunosuppressive properties of MSCs, in agreement with the
view that these cells downmodulate ongoing inflammatory responses [85] (Figure 2B).

MSCs can also reduce the differentiation of naïve CD4+ T lymphocytes into Th1
effector cells or attenuate their function by decreasing IFN-γ production and promoting a
shift towards a Th2 immune response. In this case, MSCs downregulated the expression
of the natural killer group 2, member D (NKG2D) receptor on CD8+ T lymphocytes, then
suppressing cell activation [86]. The same study showed that MSCs increased PGE2, IDO1,
and TGF-β1 secretion when cocultured with CD8+ T lymphocytes [86]. MSCs can also
suppress the proliferation of NK cells (Figure 2A). At low NK to MSC ratios, MSCs alter the
phenotype of NK cells and suppress cell proliferation, cytokine secretion, and cytotoxicity
against HLA-class I-dependent target cells [87]. MSCs have also been shown to inhibit the
expansion of blood invariant natural killer T (iNKT) cells and γδT lymphocytes in both
cell–cell contact and in transwell systems. This inhibition was mainly mediated by PGE2 [88].
Activated MSCs stimulated by LPS or TNF can also mediate M2 macrophage polarization by
releasing PGE2 that acts through the prostaglandin receptors EP2 and EP4, and IL-10 [89].

Melief et al. found that MSCs co-cultured with monocytes induced the secretion
of IL-6 and prevented monocyte differentiation into immunogenic antigen-presenting
cells [90]. MSCs also skew the differentiation of monocytes towards anti-inflammatory
IL-10-producing cells [90]. The authors showed that MSCs promoted monocyte survival
and differentiation into CD206+ and CD163+ type 2 macrophages that secreted high levels
of IL-10 and CCL18. Moreover, they observed that MSCs directly induce Treg cells by the
secretion of TGF-β and indirectly by triggering the secretion of CCL18 by macrophages
that in turn induce more Treg cells [90,91] (Figure 2A).

Among the multiple advantages of using MSCs in cell therapy, their ability to make
allosuppression can be included, thus playing a role in immune tolerance and regulation
of anti-donor immune responses after solid organ transplant [92]. Apparently, one of the
main mechanisms employed by MSCs for allosupression, and immunosuppression in
general, is the induction of Treg cells. To date, when MSCs are cocultured with antigen-
specific T cells, they induce the expansion of Treg cells [93]. It has also been shown that
under inflammatory conditions, MSCs mediate the adhesion of Th17 cells via CCR6 and
induce a Treg phenotype in these cells, thereby exerting an anti-inflammatory effect [94].
Moreover, MSCs express Notch 1 ligands (Jagged1, Jagged2, and Delta-Like (DLL) 1, 3, and
4) that activate the Notch-1-dependent signaling pathway in CD4+ T lymphocytes, also
leading to Treg differentiation [95]. Allogeneic MSCs induced the forkhead box P3 (FoxP3)
and CD25 expression (Treg phenotype) by the secretion of prostaglandins and TGF-β and
expression of HLA-G5 in coculture with CD4+ T lymphocytes [96]. Moreover, when MSCs
and B lymphocytes from healthy human donors were cocultured with various B lymphocyte
stimuli, cell proliferation and immunoglobulin production were inhibited by the MSCs [97].

In addition to the immunosuppressive activities of MSCs over T and B lympho-
cytes, they can also inhibit the differentiation and activation of dendritic cells (DCs). This
inhibitory effect was shown to be ratio-dependent and resulted in phenotypical and func-
tional modifications in the DCs, as demonstrated by reduced expression of costimulatory
molecules and hampered capacity to stimulate naïve T lymphocyte proliferation [98]. MSCs
had a profound inhibitory effect on the generation and function of both CD34+-derived
and monocyte-derived DCs [98]. It was also demonstrated that the coculture of MSCs
with DCs led to increased production of IL-10 by the JAK1/STAT3 signaling pathway in
DCs, thus inhibiting cell maturation [99]. Collectively, these results indicate that MSCs can
modulate immune responses at multiple levels, employing modulatory molecules such as
TGF-β, hepatocyte growth factor (HGF), prostaglandins [93,100], IDO1 [101], and others.

Regarding the balance of MSCs as pro- or anti-inflammatory mediators, they may
require a ‘licensing’ step provided by inflammatory molecules such as IFN-γ, TNF, or
TLR ligands [102]. Probably, the timing of cell exposure to the factors that influence the
decision of a pro- or anti-inflammatory role is also critical. Although the inflammatory
modulation triggered by TLR engagement remains unclear, the concept of MSCs polariza-
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tion provides an attractive model to explain some apparently contradictory roles of MSCs
in inflammation. Indeed, a pro-inflammatory activity of MSCs may be beneficial in the
early phase of inflammation and help mounting a proper immune response [14]. It was
published that LPS-stimulated MSCs express chemokine receptors and acquire higher
mobility. These stimulated cells secreted large amounts of pro-inflammatory cytokines
and recruited neutrophils in an IL-8- and macrophage migration inhibitory factor (MIF)-
dependent manner [103]. Although the functional importance of these results remains to be
demonstrated in vivo, endogenous MSCs may participate in the early phase of pathogen
exposure [103]. Indeed, the balance between apparent opposite biological functions of
MSCs depending on the environment further supports their use in therapeutic trials [14],
which may, at least in part, also be explained by cellular heterogeneity.

5. MSCs Secretome in Tissue Regeneration

As stated before, some main points are considered very important in the biology
of MSCs, making them excellent candidates for the treatment of several diseases. These
include the fact that sentinel resident MSCs and blood MSCs, which selectively home
to injured tissues [51], compose a heterogenous population able to carry out multiple
tasks. Moreover, they differentiate into numerous cell types and trigger the differentiation
of other local stem cell populations, leading to general tissue repair and angiogenesis.
Additionally, they promote tissue inflammation and inflammatory control in the early
phase of pathogenic infection. Moreover, their plasticity and adaptation to different tissues
and organs make them suitable for systemic injection to treat multi-organ diseases. Many of
these functions rely on their capacity to alter the tissue environment through the paracrine
secretion of several, and possibly tissue-specific, mediators [104].

The secretome is the supernatant of MSCs maintained in culture under normoxic
conditions or in conditioned media and is composed of soluble factors, such as cytokines,
chemokines, growth factors, and extracellular vesicles (EV). EVs can be classified into
exosomes, microvesicles, and apoptotic bodies depending on their size, biogenesis, and
composition [105]. Many of the regenerative properties previously credited to stem cells
are being shown to be mediated by secreted exosomes (Figure 1B), and MSCs produce
significant amounts of exosomes when compared with other cells [106,107]. The EVs
secreted by MSCs are essential, as they preserve most of their parental cell features such as
cell homing, immunomodulatory capacity, and regenerative potentials [108]. It is possible,
for example, that MSCs-derived EVs act at a distance in vivo, maybe supporting stem
cell-based tissue regeneration systemically.

The use of cell-free therapies such as the secretome of MSCs in regenerative medicine
provides advantages over cell-based applications, including immune compatibility, tumori-
genicity, embolism, and transmission of intracellular infections. Moreover, the storage of
MSC-derived EVs can be done without potentially toxic cryopreservative agents and re-
taining the potency of the sample for an extended period. The MSCs secretome is practical
and economical, and samples consisting of either MSCs plus EVs or EVs solely can be
obtained from the same cultures. Moreover, the biological composition of secretomes can
be modified for more specific and potent effects in therapeutic application.

It was observed that secretome-based therapies improved the pathological condition
after cerebral ischemia, myocardial infarction, and trauma [107]. Moreover, it promoted
the resolution of LPS-induced lung injury by attenuating lung inflammation and pro-
moting wound healing. It also induced anti-inflammatory M2 macrophages, at least in
part by insulin-like growth factor I (IGF-I) activity [109]. The authors also observed that
human MSCs secretome reduced the myocardial infarction area in acute patients [110].
Additionally, the secretome contained EVs, HGF, and VEGF, stimulated neurogenesis, and
improved traumatic brain injury recovery in a rat model [111]. It was also shown that
human adipose-derived MSCs secretome [112] improved tissue reperfusion after ischemia
in mice and significantly enhanced endothelial cell growth, bone marrow cells mobilization,
and cell homing to the ischemic region [113].
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MSCs secretome also contains pro-inflammatory cytokines [114], and the balance
between pro- and anti-inflammatory mediators can determine the final effect over the
pathogenic condition. Corroborating with this view, some authors showed that MSCs
secretome reduced the severity of murine colitis by lowering the pro-inflammatory media-
tors IL6, IL8, TNF, and MIP-1α transcription, but increasing IL10, an anti-inflammatory
cytokine [115]. In another example, the treatment of alkali-injured corneas with MSCs con-
ditioned medium improved wound healing and showed a robust bactericidal effect [116].
The neuroprotective and neurotrophic effects of MSC-derived secretome [110,111] were
also demonstrated, with beneficial effects in an animal model of Alzheimer’s disease. This
medium contained factors involved in multiple neuroregenerative mechanisms, such as
neuroprotection, axonal elongation, neurotransmission, inflammation suppression, and
microglial regulation. Notably, secretomes also attenuated pro-inflammatory responses
induced by β-amyloid plaques and generated an anti-inflammatory/tissue regeneration
environment, accompanied by the induction of anti-inflammatory M2-like microglia [117].

The role of MSCs in angiogenesis is of great interest due to the large number of
diseases related to insufficient or abnormal vessel growth, such as arteriosclerotic diseases.
In this regard, some studies have shown that MSCs secrete factors that induce proliferation
and migration of endothelial cells, promoting tube formation and preventing endothelial
cell apoptosis in vitro [118]. Moreover, the secretion of pro- and anti-angiogenic factors can
be modified by hypoxia conditions [119].

Purified exosomes from human MSCs culture reduced the infarcted area in a mouse
model of myocardial ischemia/reperfusion injury [120]. Moreover, microvesicles derived
from human adult MSCs protected from acute kidney injury induced by ischemia-reperfusion
and subsequent chronic renal damage [121]. MSC-derived microvesicles also ameliorated lung
inflammation, and their therapeutic effects and immunomodulatory properties were partly
mediated by angiopoietin-1 [122]. In another study, bone marrow-derived MSCs microvesicles
played a protective role in acute pancreatitis by reducing the levels of pro-inflammatory
cytokines and regulating the nuclear translocation of NF-κB p65 [123]. MSC-derived exosomes
promoted liver regeneration in drug-induced liver injury models [124], and exosomes derived
from MSCs also exerted a cardioprotective effect after myocardial ischemia/reperfusion injury
through the activation of the Wnt/β-catenin signaling pathway [125].

MSCs have also been suggested for the treatment of tumors, although some contradic-
tory results were obtained. It was observed that MSC-derived microvesicles inhibited the
tumor bladder T24 cells growth in vitro and in vivo [126]. The in vivo intra-tumor admin-
istration of MSCs microvesicles in already established tumors in SCID mice significantly
inhibited tumor growth [127]. An additional advantage of using exosomes to treat tumors
is that they can be engineered to contain relevant gene information and retain the ability to
home to the tumor site and be internalized by the target cells [107,128].

Recently, exosomes derived from MSCs were proposed as a possible therapy to treat
the “cytokine storm” observed in COVID-19 patients with severe pneumonia [129], but a
limited number of human clinical studies using MSCs is available. Furthermore, it was eval-
uated if MSCs transplantation would improve the outcome of seven enrolled patients with
COVID-19. The pulmonary function and symptoms of those patients were significantly
improved within two days after MSCs transplantation. After three to six days of treatment,
the overactivated inflammatory CXCR3+CD4+ T cells, CXCR3+CD8+ T cells, and CXCR3+

NK cells were not observed. In addition, a group of CD14+CD11c+CD11bmid regulatory
DC population dramatically increased, and the intravenous transplantation was proven
safe and effective, especially for patients critically ill [130]. Currently, ClinicalTrials.gov
and the WHO Clinical Trials Registry Platform (WHO ICTRP) report a combined 28 trials
exploring the potential of MSCs or their products for COVID-19 treatment [131].
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6. MSC As an Alternative Treatment for COVID-19

The COVID-19 pandemic is caused by the virus SARS-CoV-2, which spread quickly
and became a global health emergency. The rapid virus replication in the lungs triggers
a strong inflammatory response that leads to a “cytokine storm”, causing ARDS and
respiratory failure, the leading cause of death in severely affected patients [132]. Although
the lungs are more evidently compromised, the disease affects multiple organs, and patients
with a previous history of cardiac symptoms, obesity, diabetes, or coagulation disorders,
for example, have a higher morbimortality risk. Then, considering COVID-19 a systemic
disease, we can assume that multiple affected organs and tissues could benefit from the
treatment with MSCs and/or with their secretome.

In the lungs, the inflammation is caused by the release of cytokines virally triggered,
including IL-2, IL-6, IL-7, granulocyte colony-stimulating factor (GSCF), interferon-gamma-
induced protein 10 (IP10), monocyte chemoattractant protein 1 (MCP1), macrophage
inflammatory protein 1α (MIP1α), and TNF. These mediators and others lead to pulmonary
edema, air exchange dysfunction, and acute cardiac injury, for example [133]. Currently,
available therapies include non-specific antivirals, antibiotics to prevent secondary infection
and sepsis, and corticosteroids to reduce inflammation. However, the success rate of
this therapeutic strategy is low in patients with severely affected pulmonary function.
Therefore, several drugs are being tested for repositioning, including hydroxychloroquine,
Remdesivir, and Ivermectin worldwide [134]. Among cell-based alternatives, MSCs have
more registered clinical trials and possibly more chances to be approved for COVID-19
treatment [135]. Moreover, they have documented safety profiles from FDA-approved
clinical trials. A systematic review of several clinical trials involving over one thousand
participants that received intravascular transplants of MSCs for different diseases and
clinical conditions was performed in 2010. In that study, a follow-up was done varying
from two weeks to thirty months and attested to the safety of MSCs therapy [136].

A clinical study of severely affected COVID-19 patients using MSCs derived from
the human umbilical cord was performed. The patients were divided into the standard
treatment group and the standard treatment group that received the cell infusion. After
twenty-eight days, the mortality in the group that received cell infusion was 0% and in the
other group was 10.34%. Moreover, the clinical condition improved from the third day after
cell infusion and reached a significant difference on the seventh day. There was also a signif-
icant reduction in C-reactive protein and the level of IL-6, and the number of lymphocytes
returned to the normal range significantly faster [137]. A study using MSCs from adipose
tissue was also carried out in thirteen patients with COVID-19 on mechanical ventilation.
There was a clinical improvement in 70% of the patients, on average sixteen days after
the first application. Seven patients were extubated, and four remained intubated (two
with an improvement in their ventilatory and radiological parameters and two in stable
condition). Two patients died, but particularly in those patients with clinical improvement,
there was a decrease in the inflammatory and coagulation parameters, C-reactive protein,
IL-6, ferritin, LDH, and d-dimer, as well as an increase in lymphocytes [138]. Another
study evaluated the allogeneic transplantation of menstrual blood-derived MSCs in two
hospitalized patients. The first patient received MSCs transplantation through intravenous
infusion three times on 5th, 6th, and 8th February 2020. The injection dose of MSCs was
set to one million cells per kg of body weight. The second patient received the same
intravenous infusion three times on 8th, 9th, and 11th February 2020. Then, the fraction
of inspired O2 of the two patients gradually decreased while the oxygen saturation and
partial oxygen pressure improved. Furthermore, the patients’ computed tomography (CT)
scans showed that bilateral lung exudate lesions were adsorbed after MSCs infusion [139].

In a case study, a 65 year-old patient was diagnosed with COVID-19, and after twelve
days of treatment, the patient’s symptoms and inflammation were still severe. Then,
allogenic human umbilical cord MSCs were given three times (5 × 107 cells each time)
with a three day interval, with thymosin α1 and antibiotics daily. After treatment, most
laboratory indexes and CT images showed inflammation remission [140].
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In another study, twenty-five patients with severe COVID-19 received a clinical grade,
and MSCs were given at a dose of 1 × 106 cells per Kg. Promethazine hydrochloride
(intramuscular injection, 25 mg) was used before the injection of MSCs to prevent allergies.
Seven individuals received MSCs once, other seven patients received MSCs twice, and
eleven individuals were infused with cells three times. After MSCs therapy, sixteen cases
(64%) showed CT scan improvement, and all cases gained clinical improvement. No
fatalities occurred during hospitalization, but none of the inflammation indexes changed
significantly after MSCs therapy. In addition, the serum levels of lactate (LAC), cardiac
troponin T (cTnT), and creatine kinase MB (CK-MB) elevated significantly after MSC
therapy. The authors discussed that maybe no immunomodulation was observed because
the optimal detection time frame was lost. Finally, MSCs therapy appears to be a promising
option for treating severe COVID-19 but should be used with caution, especially in patients
with coronary heart disease and metabolic acidosis [141].

As discussed, the importance and immunomodulatory effects of MSC-derived EV
in vitro emerged as a potential tool for treating COVID-19. This is due to a marked anti-
inflammatory effect and regenerative capacity in various in vitro and in vivo models of
the disease [142,143]. MSC-derived EVs are also promising in treating post-COVID-19
pulmonary fibrosis, described as a complication in COVID-19 patients [144]. This possibility
is reinforced by the observation that MSC-derived EVs can prevent the development of
fibrosis following experimental lung injury [145].

In one of the studies using MSCs to treat COVID-19, exosomes derived from allogeneic
bone marrow MSCs (ExoFlo) were used in twenty-four SARS-CoV-2 PCR-positive patients.
Patients with moderate-to-severe ARDS received a single 15 mL intravenous dose of ExoFlo
and were evaluated for treatment safety and efficacy for fourteen days. The results were
very encouraging, with no adverse effects, and reached an 83% survival rate. Of the total
patients, 71% recovered, 13% remained critically ill though stable, and 16% died for reasons
unrelated to the treatment. Laboratory results revealed a reduction in blood neutrophils,
CD4+, and CD8+ lymphocyte numbers in recovering patients. Likewise, acute phase
reactants declined, with mean C-reactive protein, ferritin, and d-dimer reduction [146].

7. Conclusions

MSCs have several advantages over other populations of stem cells, including their
maintenance in vitro for long-term clonal expansion, generation of secretome, and the
possibility for in vitro manipulation to improve cell properties. Moreover, they can migrate
and disperse in different tissues, adapting to the biological demands and necessities locally
with shallow risk after in vivo injection. Then, they may populate different organs and tissues
and affect the environment by the paracrine secretin of local mediators and be affected by
the environment, acquiring specific functions. Much remains to be understood about MSCs
biology, but they pose a promising tool for treating systemic diseases such as COVID-19.
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